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We present a fixed energy sandpile model which, by increasing the initial energy, undergoes, at the level of
individual configurations, a discontinuous transition. The model is obtained by modifying the toppling proce-
dure in the Bak-Tang-Wiesenfeld �BTW� �Phys. Rev. Lett. 59, 381 �1987�; Phys. Rev. A 38, 364 �1988�� rules:
the energy transfer from a toppling site takes place only to neighboring sites with less energy �negative gradient
constraint� and with a time ordering �asynchronous�. The model is minimal in the sense that removing either of
the two above-mentioned constraints �negative gradient or time ordering� the abrupt transition goes over to a
continuous transition as in the usual BTW case. Therefore, the proposed model offers a unique possibility to
explore at the microscopic level the basic mechanisms underlying discontinuous transitions.
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I. INTRODUCTION

Self-organized criticality �SOC� has been proposed as a
universal mechanism leading to scaling laws in the dynamics
of driven systems that evolute towards a critical state without
the fine tuning of a control parameter �1�. Recently it has
been realized �2–7� that the approach to criticality is in fact
controlled by the driving force as well as by the dissipation
present in the dynamics. These observations initiated an ex-
tensive search for the influence of the values of these control
quantities to the critical behavior of the corresponding SOC
models. As a consequence, an alternative way to study SOC
models emerged, restricting the considerations in closed sys-
tems �without external driving and dissipation� obeying the
same dynamical rules. In these models, the energy density �
is exactly conserved. Since the fixed-energy sandpiles �FESs�
possess simpler dynamics �without loss or addition� and are
translationally invariant, they are easier to study than their
SOC counterparts. Furthermore, the order parameter in this
case can be easily identified: below a critical density the
dynamics lead to an absorbing state characterized by the ab-
sence of activity �energy transfer processes�. For densities
above the critical �c, the system sustains activity. Thus, the
critical properties of the system can be explored defining as
order parameter the density of active sites and studying its
dependence on �. In addition the measured critical exponents
in absorbing-state phase transitions can be related to ava-
lanche exponents measured in slowly driven systems �8,9�.

Our analysis will be devoted exclusively to the sandpile
models, although many of our results could apply as well to
other systems possessing SOC �10�. Usually the transition
from an absorbing �vanishing order parameter� to an active
state �order parameter different from zero� in FES models is
continuous �11�, allowing their classification in universality
classes. On the other hand, there is a variety of physical
processes that are characterized by a discontinuous transition
�melting, boiling, earthquake events, etc.�. It is therefore

natural to ask if such systems could be described in terms of
fixed-energy sandpile models. In the present work we show
that a suitable modification of the toppling rules in the Bak-
Tang-Wiesenfeld �BTW� model can lead to a discontinuous
transition. Even more, we determine two conditions, im-
posed on the BTW dynamics, which are both neccessary and
sufficient to obtain an abrupt �first-order� transition in the
corresponding FES model: the toppling of an energetically
activated site involves energy transfer processes only to less
energetic neighbors and takes place sequentially in time. This
observation opens the possibility to design devices with ex-
treme sensitivity on control parameters by applying the
analogous constraints.

Discontinuous transitions in SOC models have already
been considered in the context of the so-called stick-slip dy-
namics �12� or the breakdown of disordered media �13�.
However, our approach here is different as it is based entirely
on slight modifications of the BTW rules. This paper is or-
ganized as follows: in Sec. II we present the dynamics and
describe the critical properties of the proposed model. In
addition we compare the obtained results with the critical
behavior of conventional FES models. In Sec. III an intepre-
tation �also in terms of microscopic dynamics� of the numeri-
cal results of Sec. II is given, and finally in Sec. IV we
summarize our findings and give a brief outlook.

II. THE SEQUENTIAL MODIFIED BTW (SMBTW) FES
SANDPILE MODEL AND ITS

CRITICAL BEHAVIOR

The FES model we use is the following: we randomly
depose energy on a square lattice in the form of grains. Each
site can have an arbitrary number of grains. The total energy
�and therefore the total number of grains� is fixed by the
given energy density �. We denote as zi,j the number of
grains on the site �i , j�. A site is characterized as active if zi,j

exceeds or is equal to a threshold value zc. An active site
topples and grains are transferred from this site ��i , j�� to the
next neighboring sites provided the corresponding zi±1,j, zi,j±1
are less than zi,j. We use the same threshold value zc as in the
original BTW model �zc=4�. We impose, however, the con-
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straint that the toppling procedure is accomplished sequen-
tially: the site �i , j� can topple only if the �suitably defined�
previous site has already toppled. The ordering of the top-
pling times of the lattice sites can be chosen randomly with
the constraint that the entire lattice is covered once. This
sequence does not need to be the same in the following
sweeps.

We have explored the dynamics of the system using an
L�L square lattice and periodic boundary conditions. As
usually is the case for the FES models, the control parameter
is the density of grains � which is a conserved quantity. As
initial conditions, we have used a “microcanonical” en-
semble of N configurations obtained by placing randomly,
with a uniform distribution, �L2 grains on the lattice. As an
observable to characterize the evolution of the system within
the ensemble, we use the mean density of active sites Qa�m�
at time m. A stationary state is described through the corre-
sponding value of Q=Qa���. For most of our numerical
simulations, we have used N=1000 and L=120. We observe
that for low densities ���2.0495� all initial configurations
lead to the absorbing state Q=0. For ��2.0495 �in steps
10−4 for 100�L�316� there is a percentage w of configu-
rations that lead to Q=0 and the remaining configurations
lead to Q�0.17. In fact, in the latter case, Qa�m� ap-
proaches, in the asymptotic limit �for m�1�, a stationary
state described by random fluctuations of amplitude 0.01
around the value 0.17. In Fig. 1 we show the function Qa�m�
for one such configuration at �=2.0496. For comparison, we
display in the same plot the corresponding evolution for a
typical configuration with density just above the critical one
��=2.1151� in the usual BTW FES model.

It is clearly seen that there is an energy gap between the
stationary states of the system in the case of the SMBTW
FES model. No such gap can be observed in BTW FES
dynamics at this scale. The value of Q just above the critical
density is two orders of magnitude smaller in the BTW than
in the SMBTW case. It is then natural to assign two phases
to the SMBTW system: phase A is characterized by Q=0
�absorbing state� while phase B corresponds to Q�0.17.
Thus, the value �c=2.0495 represents the critical density of
the system for the given lattice size and set of initial configu-

rations, above which the state with Q�0.17 is accessible by
the dynamics. In the neighborhood of the critical value the
function Q��� is well fitted by a sigmoidal leading to the
estimation of the critical density of the SMBTW FES
�c,SMBTW=2.0495±0.0072. The set of configurations leading
to the nonvanishing value of Q can be used to present the
phase diagram of the model in the �Q ,�� space. As we show
in Fig. 2�a�, at �=�c,SMBTW, an abrupt jump in Q, possessing
the caharacteristics of a first-order phase transition, occurs.
The plot Q=Q��� for the common BTW model is shown in
Fig. 2�b�. As mentioned in the literature �14�, the nature of
the phase transition in this case is not clear due to the devil’s
staircase form of the function Q��� �14,15�. Our analysis,
however, supports the scenario of a continuous transition in
the BTW FES model. This is due to the fact that the spec-
trum of the stationary states P�Q� accessible by the dynamics
in the asymptotic limit possesses no energy gap, in contrast
to the SMBTW model.

In order to support further our conjecture concerning the
abrupt behavior in the SMBTW FES model, in contrast with
a smooth transition of the usual BTW FES model, one has to
calculate the dependence of the gap of Q on the lattice size
L. We have performed a calculation of the gap in the
SMBTW model for five different lattice sizes: 80, 120, 200,
600, and 1000. For lattices with size greater than L=120, the
value of the gap is almost constant: Q�0.169. The results of
this calculation are shown with crosses in Fig. 3. A solid line
at Q=0.169 is drawn to guide the eye. Additionally, we have
calculated the asymptotic value Q for the BTW FES model
using the same lattice sizes as for the SMBTW case. The
corresponding results are presented in Fig. 3 with full circles.
It is clearly seen that the asymptotic value Q in this case

FIG. 1. The function Qa�m� for a single configuration for both
the SMBTW FES model using �=2.0496 as well as the BTW FES
model ��=2.1151�.

FIG. 2. �a� The order parameter Q as a function of the control
parameter � of the SMBTW FES model. For ���c,SMBTW, we use,
in the ensemble averaging, only configurations leading to Q�0. �b�
The corresponding plot for the order parameter Q of the FES BTW
model. As in �a�, we use in the ensemble averaging, for
���c,BTW, only configurations leading to Q�0.
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tends rapidly to zero with increasing lattice size. Thus, in the
thermodynamic limit, the gap in the SMBTW remains finite
and large, characteristic for a first-order transition, while in
the BTW case no such gap occurs leading to a continuous
transition.

To illustrate this property more transparently we present
in Fig. 4 the distribution P�Q� for the two models. To allow
for a comparison, as the critical density is different in the two
cases, we calculate P�Q� at densities �i=�c,i+	� �i=1,2�
using the same value 	� for the two models.

III. INTERPRETATION OF THE NUMERICAL RESULTS

In order to understand the origin of the sharp transition in
the SMBTW model, we investigate the corresponding dy-
namics at the microscopic level. We define the single-site
states of the system in terms of the possible values of the
occupancies �number of grains on the site� ns at a given time.
To simplify our analysis we also include in the state ns=4 the
�rare� case when a site is occupied with more than four
grains. For densities ���c, we observe that the single-site
dynamics are characterized by an ergodic behavior: each
one-site trajectory visits irregularly all the accessible states in
phase space. After a characteristic time scale t�2000
�algorithmic time in units of lattice sweeps� an invariant
density is established. Having achieved this stationarity, each
state is visited with almost equal probability by the dynami-
cally evolving site. A very smooth maximum occurs
for ns=1 and ns=3. As the number of possible states is 5
�ns=0,1 ,2 ,3 ,4� we expect, for a uniform invariant density
and assuming that the ergodic hypothesis applies, to have a
1/5 probability to be on the active state �ns=4�, a value
leading to Q=0.2 very close to the observed value
Q�0.17. The deviation is due to the fact that the invariant
density is not exactly uniform.

It is worth exploring the global dynamics of the system as
well. Therefore, we investigate the evolution of a typical
configuration of the entire lattice in the critical region �
��c. In Fig. 5 we present the evolution of such a configura-
tion for �=2.060. We show the contour plots for the initial

FIG. 3. The gap in Q as a function of the lattice size L for the
SMBTW �full circles� as well as the BTW �full triangles� FES
model �semilog plot�. The solid line at Q=0.169 is used to guide the
eye.

FIG. 4. The distribution P�Q� for the SMBTW and BTW
models at densities �1=2.060, and �2=2.1255, respectively
�	�=0.0105 for both models�.

FIG. 5. The evolution of a typical configuration using the
SMBTW rules for �=2.060. We present the initial state �top� as
well as the resulting state for t=5000 �bottom�. As explained in the
text only a part of the lattice is displayed.
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configuration �top� as well as the evolving state at algorith-
mic time t=5000 �bottom�. We recall here that stationarity is
achieved already at t=2000. To simplify our representation
without losing physical insight, we adopt the coarse-grained
description of the phase space of the system used in �6,16�
distinguishing among stable �ns�3, gray�, critical �ns=3,
white�, and active �ns�3, black� sites. For a better visualiza-
tion of the details of the dynamics, it is convenient to zoom
into a part of the lattice which we choose here to be the set of
sites �i , j� with i , j� �40,60�. Obviously, as displayed in the
top plot of Fig. 5, initially the active sites form clusters that
are embedded in domains consisting of critical sites.

As the dynamics evolve, the active clusters split and their
gradual destruction initiates in favor of the formation of
larger domains of critical sites. Before the active clusters
disappear, the domains of critical sites approaching each
other collide, forming larger domains of critical sites con-
taining smaller active clusters. When the stationary state is
achieved, the critical sites form large connected domains,
similar to the above-threshold percolation clusters, which
span the entire lattice. A dynamical equilibrium is established
characterized by an irregular deformation of the critical do-
mains as well as a chaotic motion, incorporating the splitting
and recombining through collisions, of the active clusters
within these domains. Thus, the critical domains construct a
protecting network of communicating channels �see the bot-
tom plot of Fig. 5� for the irregular evolution of the active
clusters. It must be noted that critical clusters can also be
formed in the conventional sandpile models. However, the
maximal size of critical clusters in the case of the FES
SMBTW model is much larger than the corresponding size
of the conventional models.

The formation of this network is a process depending very
sensitively on the initial conditions. Consider for example a
typical configuration leading to Q=0 for �=2.0495. The total
number of grains, for a L=120 lattice, in such a configura-
tion is 25 912. Inserting one additional grain in the lattice
can lead �depending on where we put it� to Q�0.17. Thus,
density fluctuations of the order of 10−5 may lead to a tre-
mendous change of the order parameters’ values. We at-
tribute this behavior to the first-order character of the transi-
tion in our model. Actually imposing a time ordering in the
toppling rules of the system introduces an internal time scale
of the order of the lattice size L. Changes in the environment
of each site during time intervals of this order are felt by the
corresponding site due to the dependence of the local energy
current on the configuration of the environment expressed
through the negative gradient constraint. This feedback
mechanism creates an unstable environment, which leads to
a strong sensitivity to initial conditions. The relative
timescale for which this instability influences the dynamics
is of the order of 1 /L and therefore environmental influence
becomes continuous in time in the limit of an infinite system.
We have investigated the transition by relaxing each time
one of the two constraints we have used in the SMBTW
model; i.e., the negative gradient and the time ordering. In
both cases the transition turns out to be continuous and the
corresponding phase diagram is very close to the diagram
shown in Fig. 2�b� for the BTW model. Keeping only the
time-ordering constraint �SBTW model�, the internal time

scale has no consequence on the evolution of the system as
the corresponding energy currents do not depend on the en-
vironment. Keeping only the negative gradient constraint
�PMBTW model� there is no internal time and the changes in
the environment occur in time scales of the order of L2,
which become less and less important as the system size
increases. On the other hand, the choice of a negative gradi-
ent �instead of, for example, a positive gradient� constraint is
necessary in order to reach a stationary absorbing state.

IV. CONCLUDING REMARKS

Let us now summarize briefly our results. In the present
work we have introduced a sandpile model resulting from the
BTW rules through the addition of two constraints: energy is
transferred from an active site only to less energetic neigh-
boring sites and the toppling takes place in an asynchronous
manner. The latter means that the instants when a lattice site
can topple are ordered in time. We have investigated the case
without external driving. The system undergoes an abrupt
�first-order� transition. Our model resembles the dynamics of
activated random walkers �17� with the additional property
of walking only to less occupied sites. This introduces a
feedback mechanism influencing locally the energy flow on
the lattice. The proposed model is minimal in the sense that
both constraints are necessary in order to achieve the discon-
tinuous change of the order parameter. Considering the one-
site as well as the global dynamics of the system we were
able to understand the qualitative as well as some quantita-
tive features of the basic mechanism underlying the observed
transition. Our model is capable to describe physical systems
characterized by asynchronous spontaneous energy transfer.
In particular the proposed model could give additional in-
sight in prefracture processes during earthquake �EQ� events.
In this case the imposed two constraints are fulfilled: �i� the
stress within the focal area is transferred from regions of
higher tension to regions of lower tension �negative gradi-
ent�, while �ii� the microcrack transmission takes place se-
quentially. When the fracture of the heterogeneous environ-
ment is consummated, the remaining asperities suffer an
intensive stress from their environment. A tiny fluctuation of
the surrounding stress field is decisive for the final fracture of
asperities and therefore the occurrence of an EQ event or not.
In the former case the corresponding transition is abrupt �first
order� �18,19�. Additionally, the extreme sensitivity of the
proposed model on density fluctuations of relative magnitude
of the order of 10−5 �or even less for lattices with L�120�
suggests the possibility to design a high-efficiency sensor by
appropriate realization of the proposed dynamical rules. It
remains a challenging task to determine to what extent the
observed behavior possesses universal features.
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